
Using GRICAD Ciment
computing servers with R

Maya Guéguen

LECA - Grenoble

Present context : data

Present context : data

Present context : data

Present context : data

Present context :
processing power and price

Present context :
processing power and price

Present context :
processing power and price

Present context :
processing power and price

Why would I need a supercomputer
instead of my laptop ?

But depending on your machine….

To summarize roughly, 2 cases :

1. Certain amount of jobs to run

→ the limitation comes from the number
of processing units of the machine

To summarize roughly, 2 cases :

1. Certain amount of jobs to run

→ the limitation comes from the number
of processing units of the machine

2. One (or several) job memory-hungry to run

→ the limitation comes from the available
memory of the machine

Which kind of resources can I have access to
through supercomputing servers ?

For example : LUKE For example : DAHU

For example, if I have
only one job but
requiring a lot of
memory

Or if I have a huge
number of small jobs

For example : LUKE For example : DAHU

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

In Grenoble, example of
GRICAD Ciment computing servers

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

• Create an account :
https://perseus.univ-grenoble-alpes.fr

• Be part of / write a project
explaining why you want access and

use the GRICAD resources

• Connect to the cluster :
 Windows users :

WinSCP (https://winscp.net/eng/download.php)
is your super friend !

 Unix / Mac users:
Geek way : with SSH and terminal

• Upload data / scripts :
 Windows users :

WinSCP again !

 Unix / Mac users:
Geek way : with SCP and terminal

https://perseus.univ-grenoble-alpes.fr/
https://winscp.net/eng/download.php

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

• NIX environment !

Into my /home/username/ folder :
I can install from pre-compiled files all the
softwares I need.

You need to do this only once per cluster :
then you just have to load your NIX session
each time you need to use the soft you
installed.

Load my NIX session :
> source /applis/site/nix.sh

Look for a specific pattern among the pre-compiled software list :
> nix-env -qaP | grep boost

Install the desired software :
> nix-env -i boost

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

• Specific case of R (softwares) :

> source /applis/site/nix.sh

> nix-env -i R

> nix-env -i proj

> nix-env -i gdal

> nix-env -i netcdf

> nix-env -i sqlite

> nix-env -i curl

> nix-env -i openssl

> nix-env -i boost

> nix-env -i xml2

> nix-env -i libxml2

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

• Specific case of R (packages) :

1. Create a file /home/username/.config/nixpkgs/config.nix :
{

packageOverrides = super: let self = super.pkgs; in

{

rEnv = super.rWrapper.override {

packages = with self.rPackages; [

devtools

ggplot2

reshape2

];

};};}

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

2. Install all the packages at once :

> nix-env -f "<nixpkgs>" -iA rEnv

Advantage : update at the same
time the R version !

• Specific case of R (packages) :

1. Create a file /home/username/.config/nixpkgs/config.nix :
{

packageOverrides = super: let self = super.pkgs; in

{

rEnv = super.rWrapper.override {

packages = with self.rPackages; [

devtools

ggplot2

reshape2

];

};};}

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

• NIX environment !

Into my /home/username/ folder :
I can install from pre-compiled files all the
softwares I need.

You need to do this only once per cluster :
then you just have to load your NIX session
each time you need to use the soft you
installed.

Each time you want to work or start a job onto the cluster,
load your NIX session :

> source /applis/site/nix.sh

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

For each type of job I want to run,
I need to estimate :

- How much memory it needs
- How many processing units it uses

- How many time it takes

This is NOT an optional step !

Necessary to know
what kind and how many

resources I will have to ask for.

So, now I can run my job(s) ?

 YES ! With the help of…

 a Batch Scheduler : task and resource manager for HPC

Computer application for controlling execution of

non-interactive jobs through a job queue :

• adaptation to different contexts

• set default values (walltime, queue, CPUs...)

• access control (users, time slots...)

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job

This is not to be overlooked !
It allows you to connect directly to a set of resources, through a terminal.
Very useful to :

test your script, check data upload, softwares & packages installation

> oarsub –I --project projectname –l /cpu=1,walltime=01:00:00

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script.oar --array-param-file RUN_param.txt

> oarsub –S ./RUN_script.oar

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script.oar

#!/bin/bash

OAR instructions

#OAR -n TEST_job_A

#OAR --project projectname

#OAR -l /nodes=1,walltime=40:00:00

#OAR -O log_TEST_job_A.%jobid%.stdout

#OAR -E log_TEST_job_A.%jobid%.stderr

define some bash options

exit script as soon as a function return error

set –e

load ciment environment and required softwares

source /applis/site/nix.sh

run our R script

echo `date`

R CMD BATCH /bettik/username/JOB_A/script_A.R

/dev/stdout

echo `date`

quit the script

exit $?

oarsub -S ./RUN_script.oar

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script.oar --array-param-file RUN_param.txt

> oarsub –S ./RUN_script.oar

#!/bin/bash

OAR instructions

#OAR -n TEST_job_A

#OAR --project projectname

#OAR -l /nodes=1,walltime=40:00:00

#OAR -O log_TEST_job_A.%jobid%.stdout

#OAR -E log_TEST_job_A.%jobid%.stderr

define some bash options

exit script as soon as a function return error

set –e

load ciment environment and required softwares

source /applis/site/nix.sh

run our R script

echo `date`

R CMD BATCH "--args $1 $2"

/bettik/username/JOB_A/script_A.R /dev/stdout

echo `date`

quit the script

exit $?

oarsub -S ./RUN_script.oar --array-param-file

RUN_params_job_A.txt

SPECIES_1 14

SPECIES_2 3

SPECIES_3 9

SPECIES_4 11

Laboratory of Alpine Ecology

Example 2

(a lot of small jobs)

 Species distribution modelling

(predicting from occurrences and corresponding
environmental data a presence probability map of a species)

 Over the whole french Alps

(around 3,000 plant species)

Example 1

(one BIG job)

 Climate downscaling

(refining maps of temperature and precipitation to
a higher resolution taking topography into account)

 Over the whole Alps

(one map = 10 Go, combining several input maps)

library(raster)

Load data

ras_dem = raster(‘French_Alps_dem.img’)

ras_temp = raster(‘French_Alps_temp.img’)

Compute stuff

ras_res = superFunction(ras_dem, ras_temp)

Save results

writeRaster(ras_res, filename = ‘French_Alps_dwn.img’)

1

library(raster)

Load data

ras_dem = raster(‘French_Alps_dem.img’)

ras_temp = raster(‘French_Alps_temp.img’)

Compute stuff

ras_res = superFunction(ras_dem, ras_temp)

Save results

writeRaster(ras_res, filename = ‘French_Alps_dwn.img’)

1Install all the required packages

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

2. Install all the packages at once :

> nix-env -f "<nixpkgs>" -iA rEnv

Advantage : update at the same
time the R version !

• Specific case of R (packages) :

1. Create a file /home/username/.config/nixpkgs/config.nix :
{

packageOverrides = super: let self = super.pkgs; in

{

rEnv = super.rWrapper.override {

packages = with self.rPackages; [

devtools

ggplot2

reshape2

raster

];

};};}

library(raster)

Load data

ras_dem = raster(‘French_Alps_dem.img’)

ras_temp = raster(‘French_Alps_temp.img’)

Compute stuff

ras_res = superFunction(ras_dem, ras_temp)

Save results

writeRaster(ras_res, filename = ‘French_Alps_dwn.img’)

1
Be sure to upload all

your data. And to put it
into the right place !

library(raster)

setwd(‘/bettik/username/JOB_1/’)

Load data

ras_dem = raster(‘French_Alps_dem.img’)

ras_temp = raster(‘French_Alps_temp.img’)

Compute stuff

ras_res = superFunction(ras_dem, ras_temp)

Save results

writeRaster(ras_res, filename = ‘French_Alps_dwn.img’)

1
Be sure to upload all

your data. And to put it
into the right place !

library(raster)

setwd(‘/bettik/username/JOB_1/’)

Load data

ras_dem = raster(‘French_Alps_dem.img’)

ras_temp = raster(‘French_Alps_temp.img’)

Compute stuff

ras_res = superFunction(ras_dem, ras_temp)

Save results

writeRaster(ras_res, filename = ‘French_Alps_dwn.img’)

1

SAVE YOUR
RESULT !

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job

This is not to be overlooked !
It allows you to connect directly to a set of resources, through a terminal.
Very useful to :

test your script, check data upload, softwares & packages installation

> oarsub –I --project projectname –l /cpu=1,walltime=01:00:00

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script_1.oar

#!/bin/bash

OAR instructions

#OAR -n TEST_job_1

#OAR --project projectname

#OAR -l /nodes=1,walltime=40:00:00

#OAR -O log_TEST_job_1.%jobid%.stdout

#OAR -E log_TEST_job_1.%jobid%.stderr

define some bash options

exit script as soon as a function return error

set –e

load ciment environment and required softwares

source /applis/site/nix.sh

run our R script

echo `date`

R CMD BATCH /bettik/username/JOB_1/script_1.R

/dev/stdout

echo `date`

quit the script

exit $?

oarsub -S ./RUN_script_1.oar

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2Install all the required packages

So, what do I need exactly ?

 access to the supercomputing (HPC) resources

 to upload my data and my scripts onto the cluster

 to recreate my working environment
(here : R software, and R packages needed for my job)

 to define the resources needed by my job
(memory, processing units, time)

2. Install all the packages at once :

> nix-env -f "<nixpkgs>" -iA rEnv

Advantage : update at the same
time the R version !

• Specific case of R (packages) :

1. Create a file /home/username/.config/nixpkgs/config.nix :
{

packageOverrides = super: let self = super.pkgs; in

{

rEnv = super.rWrapper.override {

packages = with self.rPackages; [

devtools

ggplot2

reshape2

raster

foreach

data.table

];

};};}

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 1 :

Ask for one node with
lot of cores and do some

intern parallelisation

library(foreach)

library(data.table)

library(doParallel)

registerDoParallel(cores = 10)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %dopar%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 1 :

Ask for one node with
lot of cores and do some

intern parallelisation

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script_2.oar

#!/bin/bash

OAR instructions

#OAR -n TEST_job_2

#OAR --project projectname

#OAR -l /nodes=1,walltime=40:00:00

#OAR -O log_TEST_job_2.%jobid%.stdout

#OAR -E log_TEST_job_2.%jobid%.stderr

define some bash options

exit script as soon as a function return error

set –e

load ciment environment and required softwares

source /applis/site/nix.sh

run our R script

echo `date`

R CMD BATCH /bettik/username/JOB_2/script_job_2.R

/dev/stdout

echo `date`

quit the script

exit $?

oarsub -S ./RUN_script_2.oar

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 2 :

Run each species
separately.

Meaning, have as many
jobs as species

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 2 :

Run each species
separately.

Meaning, have as many
jobs as species

Keep only the executive commands
for one iteration

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

args = commandArgs(trailingOnly = TRUE)

sp = as.character(args[1])

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 2 :

Run each species
separately.

Meaning, have as many
jobs as species

Replace the species list with
function to get only one

value from external
parameter(s).

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

args = commandArgs(trailingOnly = TRUE)

sp = as.character(args[1])

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

save(res, file = paste0(‘RES.’, sp, ‘.Rdata’))

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 2 :

Run each species
separately.

Meaning, have as many
jobs as species

SAVE YOUR RESULT !

So, now I can run my job(s) ?

 2 types of OAR jobs :

1. Interactive job

2. Passive job This is to start your job / or your campaign job !
It is based on a bash file (below .oar file) containing
instructions to be executed in the OAR allocated resources.

> oarsub –S ./RUN_script_2.oar --array-param-file RUN_params_2.txt

#!/bin/bash

OAR instructions

#OAR -n TEST_job_2

#OAR --project projectname

#OAR -l /nodes=1,walltime=40:00:00

#OAR -O log_TEST_job_2.%jobid%.stdout

#OAR -E log_TEST_job_2.%jobid%.stderr

define some bash options

exit script as soon as a function return error

set –e

load ciment environment and required softwares

source /applis/site/nix.sh

run our R script

echo `date`

R CMD BATCH "--args $1"

/bettik/username/JOB_2/script_2.R /dev/stdout

echo `date`

quit the script

exit $?

oarsub -S ./RUN_script_2.oar --array-param-file

RUN_params_2.txt

species_1

species_2

species_3

species_4

species_5

species_6

library(foreach)

library(data.table)

Load species list

list.species = paste0(‘species_’, 1:48)

args = commandArgs(trailingOnly = TRUE)

sp = as.character(args[1])

Do the job for each species

RES.sp = foreach (sp = list.species) %do%

{

occ = read.txt(paste0(sp, ‘_occ.txt’))

res = superFunction(sp, occ)

save(res, file = paste0(‘RES.’, sp, ‘.Rdata’))

return(res)

}

Save results

save(RES.sp, file = ‘RES.sp.Rdata’)

2

OPTION 3 :

NOT SEEN TODAY :
Run each species

separately.
Meaning, have as many
jobs as species BUT ON
DIFFERENT CLUSTERS.

For example : LUKE For example : DAHU

For example : LUKE For example : DAHU

For example : LUKE For example : DAHU

I thought this was a ‘R in Grenoble’ speech !
Why is there not a lof of R in this presentation ?!

Because this is not really something
only R-dependent…

 GRICAD clusters are not used only by R users…
But a lot of scientific communities, using different softwares, different languages
(python, C, matlab…).
Plus, you need to learn how it works and how to use (nobody is going to take your script
and your data and do the job for you !).

 This is NOT really a question of R script…
No need for super efficient and optimized scripts… as long as it runs ! The servers are here
to provide resources that you don’t have. Run 100,000 simulations instead of 200 onto
your laptop ; run an analysis over the whole country instead of only your region, etc.

Advantages & drawbacks

 Access to bigger resources
(no need to buy a supermachine, or to take care of it)

 Free of charge for all UGA researchers
(but it is strongly advised, in a long term view, by
allocating a share of the budget to GRICAD machines
when looking for funding)

 GRICAD members are here to help you !

o No graphical interface
(out of the connection through WinSCP, everything
goes through terminal and bash commands)

o Some softwares / packages versions are
not available, or hard to install onto the
cluster by yourself
(but once again, you can ask for help to GRICAD)

o This is NOT straightforward. You need
to put your head into this.
To clean your scripts, to estimate the resources you
need, to build the OAR scripts. This is not like just
installing a new R package.

